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Do we need long term
measurements ?



Human influence on the atmosphere
during the industrial era (Anthropocene)

IPCC, 2001
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Active Carbon Cycle

A natural cycle which has been working for the last 4 
glacial-interglacial period



Carbon cycle behaviour over multiple 
glacial cycles 

Warm – deglaciation, 280 ppm

Cold – glaciation, 180 ppm

Narrow range of CO2 variation:
~180 ppm to ~280 ppm

Petit et al., 1999



Variation in T and CO2 over last 4 glacial cycles

A stable mode of 
behaviour for at 
least the past ½
million years
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Falkowski et al., 2000

Petit et al., 1999
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Global C Budget: “Slow in – Fast out”

Atmosphere

Surface 
biosphere

Atmospheric 
accumulation rate
3.2 GtC per year 1990s

2.9

Fast process (1 – 102 days) Slow process (103 – 104 days)
Gruber et al 2003 , SCOPE project
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CO2-equivalent emissions
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Source or sink ?

The “Gap Paradigm”



Vulnerability of Carbon Pools

Gruber et al. 2004

Carbon in frozen soils: 
400 PgC

Carbon in wetlands: 
450 PgC

Carbon in tropical vegetation:
340 Pg

• Risk over the coming century of up to 200 ppm of atmospheric CO2
• Not included in most climate simulations.  



Allowed carbon emission for the WRE550 pathway where atmospheric CO2 is stabilized at  550 ppm (dot-dash 
line, right axis) as obtained with the Bern CC model (Joos et al., GBC, 2001).  The model’s climate sensitivity 
expressed as equilibrium temperature increase for a doubling of atmospheric CO2 has been varied between 0oC 
(no climate feedbacks), 1.5 oC, 2.5 oC (standard case), and 4.5 oC.  The lower bounding curve has been 
calculated by phasing out CO2 fertilization, the major terrestrial sink process in the model, after year 2000 and 
by setting slow ocean mixing rates. The upper bounding case has been obtained by implementing no 
dependence of soil respiration rates on soil warming, thereby suppressing the major terrestrial source process in 
the model

Global models start to include terrestrial ecosystem feed-backs

no respiration enhancement

increase CO2 fertilization



Coupled carbon-climate models

Cox et al., 2000

Vulnerability of the Land compartment



13 Hadley Centre for Climate Prediction and Research

CHANGE TO CARBON STORED IN VEGETATION
1860 - 2100
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Are global models of terrestrial carbon cycle right ?



ATMOSPHERE

TOTAL RESPIRATION

SOIL

60%-80%

20%-40%

PHOTOSYNTHESIS



+ Measures whole ecosystem exchange of 
CO2 and H2O

+ Non-destructive & continuous
+ Time-scale hourly to interannual

- relies on turbulent conditions
- source area varying (flux footprint)
- only “point” measurements

Eddy covariance technique 

Does not deliver compartment fluxes, but:
NEP = GPP - Reco
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NEP = 550 g C yr-1

NPP = 876 g C yr-1

B) Mountain Grassland

A) Quercus ilex forest

GEP = 986

NEP = 210 g C yr-1

TER = 676

NPP = 467 g C yr-1

Aboveground = 157

Roots = 310

GEP = 2000

TER = 1450Wood 410

Leaves 150

Roots 316

Hymus and Valentini 2006
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Euroflux 1996CarboEuroflux 2000
CARBOEUROPE IP/Fluxnet 2004



Current Eddy covariance network in Europe

16 Clusters of sites
(different land uses/covers)

Continuous monitoring 
(51 sites for 5 years)

CarboEurope – IP

103 Eddy covariance sites
50 forests
28 grasslands
22 crops
3 others



CARBOEUROPE ECOSYSTEM DATABASE



New surprises coming from long term observations……

Temperature – Respiration relationship
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MIND – Water manipulation
experiment at ecosystem scale
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New surprises coming from long term observations……

Diffuse light



Changing Aerosols

•http://www.giss.nasa.gov/data/si2000/trop.aer/







PAR: diffuse/total
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MOD17+ - Remote sensing driven model
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NEP= GPP – Reco

Absorbed
Photosynthetically Active

Radiation Radiation
Use

Efficiency

GPP = (Rnet*0.45*Fpar) * {εmax* [mTmin] [mvpd] }

GPP =  APAR *   ε

Mod15
(remote sensing)



New surprises coming from long term observations……

Phenology
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New surprises coming from long term observations……

Respiration and Photosynthesis behaviour



What are the controlling driving forces of biospheric fluxes ?

Photosynthesis is temperature driven in northern European ecosystems
and water limited in southern European ecosystems

However terrestrial carbon uptake is weakly coupled with mean climate

Reichstein, Valentini, Papale
GRL 2006



An example of long term observations 
carbon and its vulnerability:

the Heat wave 2003



Temperature Anomaly July 2003/July 2002

Ciais et al. Nature 2005
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Figure 5. . Malga Arpaco mean air temperature and total rainfall 
for periods May - September 2003 and May - September 2004.

Heat Wave 2003 
Amplero - Mountain grassland Italy







GPP anomaly July-September 2003 vs 2000-2002 
Reichstein et al. Global 
Change Biology 2006





An example of long term observations 
carbon and its vulnerability:

disturbances (storms, fires, humans..)



Annual mean 1850-2000: 35 M m3 of forest wood
damaged by natural disturbances in Europe.

53% wind throw
16% fire
16% biotic (insects)
3% snow
5% other abiotic

Extreme climate events or disturbances have a strong 
effect on biosphere-astmosphere exchanges

Tatra Experiment CarboEurope



Mean day on monthly base
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NEX: no post-disturbance management
IF: standing forest not affected by wind throw



Human impacts on land carbon



Deforestation and Kyoto Protocol

Santilli et al. 2003 

Tropical Land Use Change: 0.8±0.2 to 2.2±0.8 PgC yr-1

Kyoto Target: 0.5 PgC yr-1



Effects of management (age) Magnani et al. (Nature 2007)



New Challenges



All GHGs
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Global warming potential: 
N2O and CH4 trade-offs with CO2

We need long term measurements of trace gases !



Relaxed eddy accumulation

Tunable Diode Lasers
Quantum Cascade Lasers

New instruments for trace gases flux measurements
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Particle fluxes during desert storms in Inner Mongolia desert
(Fratini et al. 2007 ACP)



Conclusions
• 1. Long term mesasurements are necessary to

capture extreme events and natural
disturbances as they are dominant feed-back to
carbon cycle

• 2. A well designed and long term oriented flux
network can help to improve global models with
processes that are not adequately captured by
current knowledge

• 3. Human impacts are dominant on age effects
structure, forest management, deforestation and 
fires, thus long term observation sites should be
also located in human dominated landscapes



Conclusions

• 4. Non CO2 trace gases should be
included in long term monitoring with
improved instrumentation

• 5. Synergies with ecological/biodiversity
inventory data is essential. Flux monitoring
sites without a comprehensive “in situ”
ecological data collection programme is
useless!
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